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Abstract: Sentinel lymph node (SLN) biopsy has gained attention as a method of minimizing the

extent of neck dissection with a similar survival rate as elective neck dissection in oral cancer.

Indocyanine green (ICG) imaging is widely used in the field of surgical oncology. Real-time ICG-

guided SLN imaging has been widely used in minimally invasive surgeries for various types of

cancers. Here, we provide an overview of conventional SLN biopsy and ICG-guided SLN mapping

techniques for oral cancer. Although ICG has many strengths, it still has limitations regarding its

potential use as an ideal compound for SLN mapping. The development of novel fluorophores and

imaging technology is needed for accurate identification of SLNs, which will allow precision surgery

that would reduce morbidities and increase patient survival.

Keywords: sentinel lymph node; near-infrared fluorescence imaging; oral cancer

1. Introduction

Oral cancer is the sixth most common cancer, with over 0.6 million newly diagnosed
patients every year worldwide [1]. Oral cancer has highly invasive features, and conse-
quently, one-third of patients present with neck node metastasis at diagnosis, and the
5-year survival rate of these patients is only half that of those without metastasis [2]. Occult
metastasis occurs in 30%–40% of clinically node-negative patients (cN0) who underwent
elective neck dissection (END). In contrast, 60%–70% of patients with oral cancer undergo
unnecessary neck dissection, which substantially increases the patient’s burden due to neck
scarring, asymmetrical disfiguration, and functional deterioration [3].

Sentinel lymph node (SLN) biopsy has gained attention as a method of minimizing
the extent of neck dissection with a similar level of survival rate as END. Research on SLN
biopsy for oral cancers is lacking compared to that for other types of cancer. In a meta-
analysis of the diagnostic evaluation of SLN biopsies performed on 3566 patients with early
head and neck squamous cell carcinomas published in 2017, Liu et al. reported a clinically
meaningful identification rate, sensitivity, and negative predictive value of 96.3%, 87.0%,
and 94.0%, respectively [4]. However, SLN biopsies are not routinely used for treating
head and neck cancers. The neck of patients still needs to be opened during the SLN
biopsy procedure, resulting in a higher risk of injury to the marginal mandibular branch
of the facial nerve than during the standard END procedure. In the case of oral cancers
localized in the mouth floor, SLN biopsy with radiography has lower sensitivity due to
the shine-through effect. Medical staff are exposed to radiation while using radioactive
tracers, and the accuracy of intraoperative identification is frequently decreased due to the
nature of the agent, resulting in poor spatio-temporal resolution [5,6]. Therefore, there is
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an unmet clinical need for simpler and safer methods of SLN biopsy, particularly when
considering that some institutions may not have adequate radiation facilities, and medical
providers are burdened by the idea of being exposed to radiation.

Indocyanine green (ICG) can be useful for identifying deep-lying lesions below the
skin surface and can achieve high penetration during surgery [7]. ICG is the only intraop-
erative near-infrared (NIR) fluorophore approved by the Food and Drug Administration
(FDA) [8]. ICG was initially used in liver function tests, as it is metabolized in the liver.
It is now used as an off-label surgical tool during various oncologic surgeries to pro-
vide surgeons with additional real-time information [9,10]. It has been used to delineate
surgical margins during primary tumor resection and to identify SLNs for detecting metas-
tasis [11–13]. To overcome the drawbacks of the previous radiotracer-based SLN detection
methods, the ICG-guided SLN mapping has been introduced. This technique is a real-time,
high-resolution, non-ionizing, and inexpensive method that is easy to use and does not
affect the surgical anatomy. This method also reduces the gap between the preoperative
imaging and surgical operative findings [14–18]. In this study, we reviewed the existing
literature on ICG-guided SLN mapping techniques in patients with oral cancer to examine
the current techniques and their limitations and propose future directions for more accurate
fluorescence image-guided surgical technology.

The search strategy of this literature review was as follows: PubMed and Google
Scholar were used to search for references with the key terms “oral cancer”, “head and
neck cancer”, “near-infrared fluorescence”, “sentinel lymph node”, “indocyanine green”,
“image-guided surgery” and “molecular imaging”. Studies published in English until June
2020 were included. Clinical trials currently in progress on the ClinicalTrials.gov website
were searched and organized using the key terms aforementioned.

2. Conventional Sentinel Lymph Node Biopsy

Occult metastasis cannot be definitively diagnosed based on non-invasive imaging
modalities, such as preoperative computed tomography (CT), magnetic resonance imaging,
and positron emission tomography/CT. Therefore, END is performed for both staging
and therapeutic purposes [19]. However, approximately 30% of patients who undergo
END are later found to have pathologic lymph node metastases based on histologic results,
indicating that 70% of these patients undergo unnecessary surgery [20,21]. Considering
postoperative morbidity, they can be considered to have been over-treated. Proponents of
the “wait-and-see strategy” for neck metastasis claim that initiating treatment once neck
node metastasis is detected during follow-up of patients with cN0 oral cavity cancer does
not significantly affect survival [22].

By definition, SLN refers to the first echelon lymph node where the tumor directly
flows through the lymphatic duct. The concept of SLN has been proposed by Cabanas using
lymphangiograms in patients with penile cancer, while intraoperative lymphatic mapping
techniques have been introduced by Morton et al. in patients with melanoma [23,24].
Tumor metastasis via the lymphatic ducts is known to occur in serial patterns [25]. The
likelihood of tumor metastasis can be predicted by assuming that lymph node metastasis
first occurs in an SLN. Numerous studies have been conducted with the assumption that, in
theory, if no cancer cells are detected in an SLN, then there is no metastasis in other higher-
tier lymph nodes and lymph node dissection is unnecessary [26]. Therefore, intraoperative
SLN biopsy has been accepted as an important technique for determining the extent of
surgery in patients with various types of cancers [27].

3. Currently Used Fluorophore for Sentinel Lymph Node Biopsy

Existing methods of SLN biopsy use preoperative SLN identification using lym-
phoscintigraphy and intraoperative gamma probe detection with or without visible blue
dye [28]. Isosulfan blue is a popular visible blue dye used in earlier SLN biopsy approaches.
It has been found to selectively stain the lymphatic system in animal experiments and has
been used in SLN biopsies for patients with breast cancer [29]. However, efforts to discover
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new dyes arose as 1%–3% of patients, in whom isosulfan blue was used, developed ana-
phylaxis, and there was also a shortage of dye [30]. Methylene blue shows a greenish-blue
color in its crystal form and a blue color in its ionized form. It is rapidly excreted from
the body as it is a low molecular weight compound with a peak excitation wavelength of
668 nm and a peak emission wavelength of 688 nm under NIR light [31]. Methylene blue
is superior to isosulfan blue in terms of its supply, cost, and risk of side effects and has
thus been widely used in clinical settings [32]. Studies have also shown that methylene
blue is more effective than other dyes in detecting SLNs and that it effectively detects SLNs
when used alone without any radiotracers [33,34]. Although it is easy to use, methylene
blue may contaminate the operative field around the tumor. The risk of contamination is
particularly high in oral cavity cancer as the primary tumor is located close to the lymph
nodes in these regions.

4. Near-Infrared Fluorescence Imaging

Visible light cannot penetrate deep into the body owing to the high rate of absorption
by water and proteins within the body; therefore, it is challenging to detect it deep within
biological tissues [35]. NIR light with a wavelength of 760–850 nm, where the rate of light
absorption by water and blood is at its lowest, has the advantages of low absorption and
reduced auto-fluorescence [36,37]. NIR has relatively high penetration depths for biological
tissues (several mm) and has a high signal-to-background ratio, exhibiting a “white stars in
a black sky” effect that facilitates target identification [38]. NIR fluorescence (NIRF) imaging
is the most suitable method for image-guided surgery owing to its low risk of radiation
exposure, light absorption in biological tissues, scattering, and auto-fluorescence [13].

ICG is the most commonly used NIR fluorophore which has a peak excitation length
of 807 nm and a peak emission wavelength of 822 nm [39,40]. NIRF imaging using ICG
achieves high skin penetration during surgery and is thus useful for identifying tumors or
lymphatics located below the skin surface [41–44]. ICG is a water-soluble tricarbocyanine
dye with a molecular weight of 774.96 Da and must be stored at 15–25 ◦C [45,46]. Once
injected intravenously, it binds to plasma proteins and is selectively absorbed by the liver;
it is not excreted by the kidneys but in bile [47,48]. As a relatively hydrophobic molecule,
ICG rapidly binds to serum proteins and has a short half-life of less than 3 min [49]. It has
negligible toxic effects on the body. Although allergic reactions to ICG, including urticaria
and anaphylaxis, have been reported, ICG can still be safely used in clinical settings as
the incidence of these reactions is quite low. The recommended dose of ICG for a liver
function test is 0.5 mg/kg and using a dose higher than this is reported to increase the
incidence of side effects [50]. ICG can be traced with the naked eye under visible light, but
it cannot contaminate the operative field or interfere in the surgery because the strength of
the fluorescence signal is not strong for the naked eye [51]. The retention and clearance
rates of ICG in blood were measured to assess the liver and cardiac circulation. Since ICG
allows for blood vessel imaging, it has also been used to acquire angiography for coronary
or neurosurgeries [52].

The NIRF imaging system consists of a light source, a filter, and a detector, and is
used to monitor fluorescent signals [53]. Since NIR is not visible to the human eye, a
special imaging system that can excite NIRF signals in the operative field and collect the
emitted photons, is necessary [54]. The NIRF imaging system receives a visible light image
and a NIR image from each charged coupled device (CCD) camera simultaneously. It
then outputs images that combine the signals from the two cameras in real-time. NIR
fluorophores are injected into the body immediately before surgery, and the fluorescence
emitted from the body when it is exposed to light from an external source is detected to
produce and display an image on a monitor [55].

In clinical settings, Fluobeam (Fluoptics, France), Photodynamic Eye (PDE; Hama-
matsu, Japan), SPY (Novadaq, Richmond, Canada), Mini-FLARE™ (Beth Israel Deaconess
Medical Center, Boston, MA, USA), and Firefly technology (da Vinci Robotics System,
Sunnyvale, CA, USA) HyperEye Medical System (HEMS; Mizuho Medical, Tokyo, Japan)
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are commonly used (Figure 1) [56]. Zhu et al. summarized the specifications of the existing
imaging systems in detail [54]. Fluobeam, PDE, and HEMS are portable hand-held imaging
systems, while SPY and Mini-FLARE™ are cart-based imaging devices. The PDE, which is
most frequently used in clinics, uses a light-emitting diode (LED) with a fluence rate of
4.0 mW cm−2 as a light source and a CCD camera with a dynamic range of 8 bits; however,
does not provide real-time integration of fluorescence images. Most fluorescence imaging
systems use a laser diode with a fluence rate of 1–10 mW cm−2 or an LED and a CCD
camera with a dynamic range of 8 or 12 bits.

Figure 1. Commonly used near-infrared fluorescence imaging devices. (A) Frequency-domain

photon migration (FDPM) imager, (B) Photodynamic eye, (C) SPY device. Adapted from Zhu B et al.

Br. J. Radiol. 2015 Jan;88(1045):20140547 [54].

As the imaging systems vary in their fluorescence excitation wavelengths, the dynamic
range of the camera, and the fields of view, it is difficult to quantitatively compare the
performance of these systems. Furthermore, ICG is used off-label for purposes other than
SLN identification, and standard measurement using ICG is not yet possible since the
administration route and dosage of ICG are not yet standardized. Most systems that allow
for monitoring of NIRF signals are expensive and require a certain amount of space owing
to their large size. Additionally, NIRF signal monitoring must be performed after restricting
the use of external light sources, such as operating lights, to prevent noise. Thus, the use of
operating lights is limited during NIRF imaging. There has always been a clinical need for
new imaging systems that can overcome these limitations.

5. Recent Applications of ICG for Sentinel Lymph Node Biopsy in Oral Cancer

5.1. ICG Concentration and Dose

ICG is peritumorally injected to identify lymphatic vessels and SLNs. High dose
injection does not necessarily indicate a strong NIR signal. When the concentration of ICG
is excessively high, the NIR signals may become weaker owing to concentration-dependent
quenching [57]. An ICG concentration of 2.5–5 mg/mL is typically used in clinical settings.
However, ICG at this concentration must still be diluted to a certain extent to generate a
sufficient NIR signal [58]. When a high concentration of ICG is injected into the body, ICG
may fail to produce NIRF signals as it does not become diluted, even if it reaches the SLN.
Thus, it is important to determine the appropriate concentration of ICG in NIR imaging
to effectively produce NIRF signals inside the body. Different concentrations of ICG are
used depending on the cancer type and the purpose of using ICG. Although ICG produces
sufficient NIR signals at a low concentration, recent studies have reported that ICG detects
tumors more effectively at higher concentrations, suggesting the need to determine the
optimal concentration and dose for different cancer types and purposes. Kong et al.
reported that an ICG concentration of 0.1 mg/mL is appropriate for SLN detection in
the stomach of a large animal model [59]. While ICG spread multi-directionally beyond
SLNs when injected at a conventional concentration (5 mg/mL), it effectively visualized
lymph nodes and lymphatic channels when injected at a diluted concentration (0.1 mg/mL).
Mieog et al. attempted SLN mapping after injecting ICG mixed with human serum albumin
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(HSA) at varying concentrations in patients with breast cancer. They observed a drastic
decrease in fluorescent signals due to quenching at concentrations above 400–800 mM [60].
Cho et al. reported excellent results following tumor resection after intravenous injection
of a high concentration (5 mg/kg) in patients with brain tumor compared to the standard
concentration [61]. Wang et al. conducted a study on 12 patients with oral cavity cancer to
determine the optimal dose of ICG for detecting primary tumors [62]. They observed the
highest contrast in fluorescent signals between tumor and normal tissues at 6 h after the
injection of 0.75 mg/kg ICG. Since the aforementioned concentration was used for primary
tumors, it cannot be used in SLN biopsy, requiring a peritumoral injection of ICG. The
clinical studies of SLN biopsy in oral cavity cancer are summarized in Tables 1 and 2. They
used 0.5–2 mL of 2.5–10 mg/mL ICG during the procedures. No side effects were reported
after injection of ICG at the concentrations and doses as illustrated in Table 1. Al-Dam
et al. used an ICG dose of 0.5 mg/kg body weight in 2 mL, which is higher than the dose
normally used in patients with oral cavity cancer and obtained reasonable SLN mapping
results comparable to those of previous studies [63]. Further research on the optimization
of the ICG dose for SLN detection is needed.

5.2. ICG Detection Timing

It has been reported that SLNs can be detected approximately 10 min after a peritu-
moral injection for other cancer types [64,65]. In breast cancer, the time from incision to SLN
identification is not long, as SLNs are observed immediately below the axillary skin. In the
case of oral cavity cancer, however, SLNs are buried within the sternocleidomastoid muscle,
making the transcutaneous visualization of SLNs difficult and time-consuming. Since NIR
imaging systems are not yet commonly used in the field of oral cancer surgery, there is
a somewhat steep learning curve for achieving an optimal balance when using an NIR
camera. The incision made in which fluorescent signals are detected is inevitably large to
expose the cervical area containing the fluorescent SLN. Researchers vary in their opinions
regarding incision size and reaching a consensus will be a major challenge. However, in
most cases, as shown in Table 1, the first SLN was detected within 10 min after injecting
contrast agents when using an NIR imaging system. Van der Vorst et al. measured NIRF
signals at 5, 10, 15, 20, 25, 30, 45, and 60 min after ICG-HSA injection during planned neck
dissection in 10 patients with oral cancer [66]. They measured the NIRF signal draining
into higher-tier nodes to determine the optimal detection time of the agent. They detected
SLNs within 5 min of injection in seven patients and 10, 15, and 30 min in the remaining
patients. The number of fluorescent SLNs significantly increased over time. Whereas
the average number of fluorescent SLNs was 1.7 ± 0.8, 6.1 ± 3.5 SLNs were detected at
60 min after injection (p < 0.001). Although the ICG used in this study was not pure ICG,
these results suggest that ICG spreads to the surrounding lymphatic system and emits
fluorescence in higher-tier nodes over time. Kim et al. used Firefly® techniques to identify
SLNs during retroauricular robotic neck dissection in nine patients with oral cancer [67].
They injected ICG peritumorally 12 h before the surgery. Compared to previous studies,
ICG was injected much earlier before surgery. They found an average of 3.4 fluorescent
SLNs per patient. If the ICG had been sequentially drained out, it must have entered
the systemic circulation, and there should have been no more SLNs that contained ICG.
However, Kim et al. detected approximately the same number of SLNs, as in previous
studies. Kong et al. hypothesized that ICG does not sequentially drain out of lymph nodes;
however, consistently flows from the injection site to the first SLN; thus, fluorescent dyes
can remain in the first SLN for a long period [58]. In cases where ICG is injected on the day
of surgery, ICG is injected immediately before inducing general anesthesia or after skin
flap elevation.
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Table 1. Clinical studies of ICG guided sentinel lymph node biopsy in oral cancer.

Author Stage Population
NIR Imaging

Device
Tracer

ICG Dilution
Solvent

ICG
Concen-Tration

(mg/mL)
ICG Dose (ml)

Injection
Route

ICG
Injection Time

Time to SLN
Identification after

Injection

Bredell
(2010)
[71]

TxN0
8

(5: OSCC,
3: Maxilla)

PDE ICG alone sterile water 10 ICG: 1
Peritumoral
at least 5P

After induction of
anesthesia

30 min initially, down to
5 min or less in the

latter cases

van den
Berg

(2012)
[72]

T1-2N0 14 HEMS
ICG-99m Tc
nanocolloid

sterile water 5
total 0.4 mL of median of

77 (range 67–94) MBq
hybrid tracer

Peritumoral
3-4P

3–19 h before
surgery

NA

Iwai
(2012)
[73]

TxN0 1 HEMS ICG alone NA 5 ICG: 0.5–1
Peritumoral

4P
After induction of

anesthesia
Within several minutes

van der
Vorst
(2013)
[66]

T1-2N0
10

(8: OSCC,
2: OPC)

Mini-FLARE ICG:HSA sterile water 2.5
1.6-mL of 500 µM

ICG:HSA
Peritumoral

4P
After flap
elevation

5, 10, 15, 20, 25, 30, 45 and
60 min

Borbón-
Arce
(2014)
[74]

T1-2N0
25

(9: OSCC,
16: Melanoma)

PDE
ICG-99m Tc
nanocolloid

sterile water 5
total 0.4 mL median of 85
MBq (range 66–158 MBq)

hybrid tracer

Peritumoral
3-4P

3–24 h before
surgery

NA

Murase
(2015)
[75]

T1-2N0 16 PDE
ICG+

99m Tc-tincolloid
sterile water 5

ICG: 0.4 (0.4ml of 74MBq
99mTc–tin colloid)

Peritumoral
After induction of

anesthesia
NA

Peng
(2015)
[68]

T1-2N0
26

(19: OSCC, 7:
OPC)

OMIONS ICG + MB NA
5

(MB: 10)
ICG: 1

(MB: 1.5)
Peritumoral

4P
Before skin

incision
NA

Nakamura
(2015)
[69]

T1-2N0
19

(15: OSCC,
2: OPC, 2:HPC)

HEMS

99mTc-tin colloid
(n = 13),

ICG + 99mTc-tin
colloid

(n = 4), ICG (n = 2)

sterile water 2.5
ICG: 0.5

(1.0 mL of 99m Tc-tin
colloid)

Peritumoral
4P

SLN detection at
15 min after ICG

injection

ICG or ICG + RI:
19.8 ± 12.6 min

RI alone:
30.6 ± 11.6 minutes

Christensen
(2016)
[70]

T1-2N0 30 Fluobeam 800 ICG-99m Tc nanocoll sterile water 5

total 0.2 mL of hybrid
tracer

(55 MBq at same day,
110 MBq at day before

surgery)

Peritumoral
4P

NA
from skin incision to skin
closure: average 39 min
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Table 1. Cont.

Author Stage Population
NIR Imaging

Device
Tracer

ICG Dilution
Solvent

ICG
Concen-Tration

(mg/mL)
ICG Dose (ml)

Injection
Route

ICG
Injection Time

Time to SLN
Identification after

Injection

Al-Dam
(2018)
[63]

T1-2N0 20 PDE ICG sterile water higher 0.5 mg/kg in 2 mL
Peritumoralat

least 5P
After flap
elevation

8.1 min (range 1–22)

Honda
(2019)
[76]

T1-2N0 18 HEMS/PDE ICG sterile water 5 ICG: 2mL Peritumoral
After flap
elevation

1 or 2 min after injection

Kim
(2020)
[67]

T1-2N0 9
Da Vinci Robotic

system
Firefly

ICG sterile water 2.5 ICG: 2 mL
Peritumoral

4P
12 h before

surgery
NA

Yokohama
(2020)
[77]

T2-3N0 18 PDE ICG NA 2.5 NA
Peritumoral

4P
During surgery

10 min after injection,
transcutaneous SLN

detection

NIR, near-infrared; SLN, sentinel lymph node; Ref., references; OSCC, oral squamous cell carcinoma; OPC, oropharyngeal cancer; HPC, hypopharyngeal cancer; ICG, Indocyanine green; P, point; MB, methylene
blue; NA, Not Applicable.

Table 2. Efficacy of previous clinical studies.

Author
Preoperative

Imaging
Modality

Number of
Preoperative

Localized SLNs

Number of
Intraoperative

Radioactive SLNs

Number of Intraoperative
Fluorescent SLNs

Number of Patient
with Detected SLNS

Number of Patient
with Metastatic

SLNs

Recurrence
(Number of

Patients)

Type of Surgical
Procedure

Number of Patient
with False Negative

Bredell
(2010)
[71]

NA NA NA 1–5 per patient (average 3) 8/8 (100%) 1 (12.5%) NA Biopsy NA

van den Berg
(2012)
[72]

LSG
followed by
SPECT/CT

41 43 47 14/14 (100%) 1 (7.1%) NA Biopsy NA

Iwai
(2012)
[73]

CT lymphography NA NA NA NA NA NA Biopsy NA

van der Vorst
(2013)
[66]

NA NA NA
17

(average 1.7 ± 0.8 per
patient)

10/10 (100%) 3 (30%) NA
Planned neck

dissection
1
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Table 2. Cont.

Author
Preoperative

Imaging
Modality

Number of
Preoperative

Localized SLNs

Number of
Intraoperative

Radioactive SLNs

Number of Intraoperative
Fluorescent SLNs

Number of Patient
with Detected SLNS

Number of Patient
with Metastatic

SLNs

Recurrence
(Number of

Patients)

Type of Surgical
Procedure

Number of Patient
with False Negative

Borbón-Arce
(2014)
[74]

LSG
followed by
SPECT/CT

67 87 86 25/25 (100%) 6 (24%) NA Biopsy 0

Murase
(2015)
[75]

LSG
followed by
SPECT/CT

25 28 35 16/16 (100%) 2 (12.5%)

1 (in positive SLN):
DOD-11 months,

1 (in negative SLN):
DOC-24 months

(3 years follow up)

Biopsy 0

Peng
(2015)
[68]

NA NA NA
88

(average 3.4 per patient)
26/26 (100%) 4 (15.4%) NA

Planned neck
dissection

0

Nakamura
(2015)
[69]

LSG 31 31

ICG alone: total 3 LNs,
ICG + RI: average 3 LNs,

RI alone:
average 2 LNs

19/19 (100%)

2 (10.5%)
ICG alone: none

ICG + RI: 1
RI alone: 1

1 (RI-alone): nodal
recurrence 1 year

later

Biopsy(+)-> neck
dissection

1

Christensen
(2016)
[70]

LSG
followed by
SPECT/CT

68 83 94 30/30 (100%) 6 (20%) NA Biopsy 0

Al-Dam
(2018)
[63]

NA NA NA
39

(average 1.95 per patient)
20/20 (100%) 8 (40%)

4: regional relapse
(2.4 years follow up)

Planned neck
dissection

4

Honda
(2019)
[76]

CT lymphography
25

(16/18 pts)
NA 29 16/16 (100%) 5 (31.3%) 2

T1-2: Biopsy(+)->
neck dissection,
Advanced T2:
Planned neck

dissection

2

Kim
(2020)
[67]

NA NA NA 31 9/9 (100%) 2 (22.2%)
None

(4 years follow up)
Planned neck

dissection
0

Yokohama
(2020)
[77]

LSG with or without
SPECT/CT

NA 63 67 18/18(100%) 5/18 (27.7%) 5
Biopsy(+)-> neck

dissection
0

LSG, lymphoscintigraphy; RT-PCR, reverse-transcriptase polymerase chain reaction; SCCA, squamous cell carcinoma antigen; NED, no evidence of disease; DOC, died of other cause; DOD, died of disease; NA,
Not Applicable.
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In these cases, SLNs are sometimes detected within 5 min of injection, and fluorescent
SLNs can be observed up to 1 h after injection (Table 1). However, the time taken for ICG to
reach the SLNs after peritumoral injection in the tongue is not exactly known. Although 10
min after ICG injection appears to be appropriate timing for the identification of fluorescent
SLNs, further research on the biological properties of contrast agents is necessary for more
effective SLN detection.

5.3. ICG Depth Penetration

ICG is known to have a skin penetration depth of approximately 1 cm. Several studies
have attempted to transcutaneously detect fluorescent signals without making a cervical
incision. Peng et al. attempted to transcutaneously visualize SLNs in the first five patients
with oral cancer; however, was unsuccessful [68]. However, Nakamura et al. found that
SLNs can be transcutaneously visualized by pressing on the skin below which SLNs are
expected to be located using an HEMS device [69]. Christensen et al. also attempted
transcutaneous visualization of SLNs; however, they only observed approximately 10% of
all SLNs [70]. They found that a low BMI was significantly associated with the success of
transcutaneous visualization (p = 0.05). When performing surgery on patients with a high
BMI, surgeons must be aware that transcutaneous visualization may be difficult during
SLN biopsy.

5.4. ICG Versus Radiotracer

Radiotracers have superior depth penetration relative to ICG. However, their major
drawback is the shine-through effect. When a primary tumor is located on the floor of the
mouth, radioactive signals spread near the injection site to generate strong background sig-
nals. The shine-through effect refers to when these background signals make it impossible
to localize the SLNs around the level I area. In contrast, ICG effectively visualizes lym-
phatic flow without contaminating the operative field. NIRF imaging using ICG effectively
detected SLNs near the primary tumor. Bredell examined in detail the pattern of lymphatic
drainage near the submandibular glands in two patients using ICG alone [71]. Van den
Berg et al. could not detect SLNs located near the injection site in four patients using a
gamma probe; however, they found them using ICG [72]. However, van den Berg et al.
could not excise the preoperatively identified SLNs located near the marginal branches of
the facial nerves in two patients. Since the use of a gamma probe and NIR imaging was not
able to distinguish between nerves and SLNs, they discontinued performing SLN biopsy
and decided to perform a close follow-up of the patients. These results emphasize the
need for contrast agents and high-resolution imaging systems that would allow for the
precise identification of SLNs from normal anatomical structures. Borbón-Arce used hybrid
tracers of ICG-99mTc-nanocolloids to detect SLNs [74]. Two SLNs that were preoperatively
detected in two patients with oral cancer were not detected during surgery owing to their
proximity to the injection site. However, of the 22 additional SLNs detected during the
surgery, 12 were detected near the injection site using NIRF imaging alone. Of the 25 pa-
tients, 6 had metastasis, and metastasis was present in the SLNs that were additionally
detected during surgery in four of these patients. The additional lymph nodes were SLNs
that were previously detected using a gamma probe and an NIR camera. These results
demonstrate the importance of a multimodal approach in overcoming the limitations of
the approaches using ICG or radiotracer alone. Nakamura et al. reported that using ICG
alone or a combination of ICG and radiotracer reduces the SLN detection time more than
using a radiotracer alone (19.8 ± 12.6 min vs. 30.6 ± 11.6 min) [69]. SLN metastasis was
not observed in one patient in whom a radiotracer was used alone; however, lymph node
metastasis was detected 1 year later (false negative issues). Christensen et al. detected
11 SLNs in only nine patients using NIRF imaging with a hybrid tracer during surgery [70].
Most of the SLNs were located close to the injection site. They were not detected on single
photon emission CT (SPECT)/CT or using a gamma probe during surgery. Fluorescent
SLNs can be easily differentiated from lymph node clusters. Micro-fluorescence scanning
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of tissue sections of fluorescent SLNs showed that SLNs emitted stronger fluorescence than
non-SLNs. However, no metastasis was detected in the fluorescent SLNs. Based on these
results, Christensen et al. suggested performing a biopsy of both fluorescent and radioac-
tive SLNs. Honda et al. detected 29 SLNs during surgery, five of which were detected using
intraoperative ICG alone [76]. Metastasis was detected in 5 of the 16 patients. All SLNs
with metastasis were detected using preoperative CT lymphography and intraoperative
ICG. Nodal recurrence occurred in 2 out of 11 patients who did not have metastasis during
the follow-up period, with a mean length of 38 months (false negative). Locoregional
recurrence did not occur in 5 patients who had metastasis. Honda proposed a combination
of multimodal methods using preoperative CT lymphography and intraoperative ICG
that does not use radiotracers. In a study comparing SLN mapping using radiotracer with
ICG and that using ICG alone, several SLNs, particularly those near the injection site, was
detected using ICG; however, not when using radiotracers. However, no biopsy results in
which metastasis was detected in radiotracer-positive and ICG-negative SLNs have been
reported. There is a possibility that a large amount of ICG flows into higher-tier nodes and
emits stronger fluorescence in the adjacent lymph nodes than radiotracers. For the wider
application of contrast agents, several issues, including false negatives, must be overcome.

Currently, there is insufficient support for the use of ICG alone during SLN biopsy.
There are few clinical trials of ICG-based tumors and SLN imaging for head and neck
cancers (Table 3). There have been no comparative studies on ICG alone and existing
radiotracers. Currently, two studies have compared images obtained using radiotracer and
ICG, and those obtained using radiotracer only. Nakamura et al. published a retrospective
study of NIR-guided SLN biopsy of 26 patients with head and neck skin cancer (melanoma,
19; squamous cell carcinoma, 10; mucoepidermoid carcinoma, 1) [78]. They compared the
results between group A (n = 18) in which SLN biopsies were performed using radiotracers
and isosulfan blue and group B in which radiotracers, isosulfan blue, and ICG were used
(n = 12). In group A, 0.4–0.6 mL of 99mTc-tin colloid was injected before the day of surgery,
and SLNs were mapped using lymphoscintigraphy. On the day of the surgery, 0.6 mL of
2% isosulfan blue was peritumorally injected after anesthesia induction before the surgery.
In group B, 0.6 mL of 0.5% ICG was additionally injected at the same site following the
injection of 99mTc-tin colloid and isosulfan blue. An SLN biopsy was then performed using
a handheld gamma probe and a customized NIR camera. A higher detection rate was
achieved in group B than in group A (95% vs. 83%). Additionally, while no recurrence
occurred in group B during the follow-up period (18–84 months), nodal recurrence occurred
in patients with negative SLNs in group A (false negative issues). Stoffels et al. conducted a
prospective randomized clinical trial of 40 patients [79]. They compared a group in which a
traditional radiotracer, 99mTc-nanocolloid, was used (group B, n = 20) and a group in which
a hybrid tracer, ICG-99mTc, was used (group A, n = 20). The contrast agents were injected
21–23 h before surgery, and SLNs were preoperatively identified using lymphoscintigraphy
and SPECT/CT. SLN biopsy was performed using a gamma probe and a Fluobeam system
during surgery. No significant differences in the intraoperative SLN detection rate, SLN
detection time, or the number of metastatic SLNs were found between groups A and B. A
total of 36 SLNs were identified in group A, 20 of which were preoperatively detected, 30 of
which were intraoperatively detected using a gamma probe, and 36 of these were detected
using ICG. Most recently, Yokohama et al. reported the results of a prospective, multicenter,
phase II clinical trial in 18 oral cancer patients. Before surgery, lymphoscintigraphy was
performed, and ICG was injected during the surgery. SLN mapping was attempted using
a PDE device while neck compression was performed using a plastic cone. ICG guided
SLN mapping using this simple compression method confirmed high concordance with
the radiotracer guided SLN mapping [77].
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Table 3. Clinical trials of ICG guided tumor and sentinel lymph node imaging in head and neck cancer.

ClinicalTrials.Gov
Identifier

Start
No. of

Patients
Target Timing Dose

Primary and Secondary
Outcome

Country

NCT02027831 2013 10

All patients requiring neck
dissection with or without

resection of the primary
head and neck cancer

Intravenous
injection before

the surgery
0.25 mg/kg

distribution of ICG in the
normal and pathological

lymph nodes
Belgium

NCT02640170 2015 500

Resectable solid tumors
(lung, breast, kidney,
parathyroid, prostate,

stomach, head and neck etc.)

NA NA

monitor the rate of
recurrence in patients who

undergo cancer surgery.
(prospective design)

USA

NCT02920216 2016 10
Salvage surgery for

recurrence of head and neck
cancer in irradiated area

Intravenous
injection before

the surgery
0.25 mg/kg

Sensitivity of ICG in
irradiated area and

surgical margins
France

NCT02997553 2017 744

ICG guided SLN biopsy
compared with the 99mTc

guided SLN biopsy in
patients with cancers and

subjected to surgery. (breast,
head and neck, melanoma,

cervix, rectum etc.)

Intravenous
injection

2.5 mg/mL
Non-inferiority of ICG

guided SLN biopsy
France

NCT03745690 2018 20 Head and neck cancer
Intravenous

injection the day
before surgery

NA

safety profile of high-dose
ICG, the efficacy of

high-dose ICG to identify
cancer compared to

surrounding normal tissue

USA

There are two major disadvantages of ICG-guided SLN mapping in oral cancer. ICG
has a low skin depth penetration rate within 10 mm, and is rapidly migrated through
the lymph nodes, hence fluorescent SLN is more likely to be found than when using a
radiotracer. Due to the anatomical characteristics of the cervical region, there is limitation of
the transcutaneous visualization of lymph nodes using ICG fluorescence imaging alone [77].
Furthermore, false-negative nodes may occur due to changes in the lymphatic system
following surgical intervention, such as skin elevation and muscle retraction, and rarely
due to skipping metastasis or reduced sensitivity of the imaging system. Due to these
drawbacks, it is recommended to use ICG in conjunction with radiotracers in an SLN
biopsy for patients with oral cancer; the use of ICG alone is not recommended [80]. A
comparative study of ICG and radiotracers is needed to establish a basis for the use of
ICG alone.

6. Advanced Imaging Contrast Agents

Although ICG has many strengths, it still has limitations regarding its potential use as
an ideal compound for SLN mapping. Since ICG is amphipathic, it easily aggregates and
lacks stability in an aqueous solution and undergoes a drastic reduction in the quantum
yield [81]. ICG easily flows through SLNs due to its small diameter (≤5 nm). This results
in reduced SLN mapping efficiency as fluorescence is not maintained for a long time and
is detected in several higher-tier lymph nodes [82,83]. Furthermore, ICG does not target
cancer specifically [84]. ICG exhibits passive extravasation through loose blood vessels
around cancer cells and accumulates within cancer cells. This phenomenon is referred
to as the enhanced permeability and retention effect [85,86]. Since ICG does not actively
and specifically target specific types of cancer cells, there is always the possibility of false
negatives. Therefore, research is actively being conducted to increase SLN accumulation
and retention rates of ICG. Without any modifications to its chemical structure, ICG
does not easily bind to other substances [39]. Although various chemical bonds can be
used in pre-clinical trials, those aside from a simple mixing method cannot be used for
ICG in clinical settings. In the case of ICG-99mTc-nanocolloid, a hybrid tracer, the two
compounds do not always stay bound together, indicating that free ICG may enter higher-
tier nodes. Khullar et al. developed a hybrid compound using HSA as a method to
retain the in vivo stability and fluorescence of ICG and used it in SLN mapping [87]. They
managed to prevent the in vivo aggregation of ICG and achieve a three-fold increase in
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fluorescence yield in lymph nodes owing to the formation of nanoparticles with a diameter
of 7.3 nm, thereby increasing the efficiency of SLN mapping. There have been attempts to
overcome the limitations of ICG, such as self-aggregation, short half-life, and non-specific
targeting, by binding ICG to a nanoparticle consisting of a polymer and an inorganic matrix.
Tsuchimochi et al. successfully identified SLNs in the neck of a rat using a tracer created by
loading 99mTc and ICG, which were normally mixed, into polyamidoamine-coated silica
nanoparticles [88]. Mok et al. designed ICG nanoparticles surrounded by hyaluronic acid
(HA) [89]. This contrast agent does not emit fluorescence due to quenching under normal
conditions. Overexpression of HAdases due to cancer or lymph node metastasis leads to
the degradation of HA by HAdases, which allows ICG to emit fluorescence. Mok et al.
verified the effectiveness of their contrast agent in a nude mouse model of breast cancer
and a lymph node model. Polymer-, lipid-, or silica-based and magnetic ICG nanoparticles
have also been developed [90]. Although research on these contrast agents is still at the
proof-of-concept stage, they offer various platforms that can overcome the limitations
of ICG (Figure 2). Further research is needed until these contrast agents can be used in
clinical practice.

Figure 2. Present and future of sentinel lymph node biopsy surgical technics in oral cavity cancer. Reproduced from [72,91]

with permission of Springer Nature.

7. Remarks

According to the SLN biopsy guidelines in patients with oral cancer, ICG is recom-
mended as an adjunct to the radioactive tracer, particularly for the cancer of the floor of
the oral cavity [80]. Radiotracer-guided SLN biopsy remains the standard for SLN local-
ization. However, surgical consensus guidelines agree on the need for new technological
developments, and this challenge is expected to bring about surgical innovations for SLN
biopsy. ICG has been widely used and provides surgeons with real-time visual information;
however, there is the main drawback of low penetration rates. To overcome this problem, a
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fluorescent and radioactive hybrid tracer has been used as a new alternative. A hybrid of
ICG and 99mTc-nanocolloid can identify deep-lying lesions, demonstrating a superior SLN
mapping rate of 95% or more than the existing blue dye in various cancers. However, more
accurate tumor targeting, and targeted fluorophores are needed to avoid missing on occult
metastatic lesions and for precise tumor margin assessment. Various molecular imaging
agents have been developed to target specific biomarkers. The effects of these agents vary
significantly from cancer to cancer and can express different types within the same tumor.
In particular, the head and neck cancers have high intra-tumoral heterogeneity; thus, even
if effective molecular imaging agents have been developed in animal models, there are
limitations in applying them directly to the human body. The contrast agent developed
in preclinical studies still requires many procedures, such as obtaining an appropriate
dose for actual clinical translation, identifying bio-distribution patterns in the body, and
evaluating toxicity in humans. Additionally, a high-resolution imaging system that can
properly implement this process visually is also essential.

Van Dam et al. implemented first-in-human intraoperative real-time tumor imaging
using a fluorescent agent targeting folate receptor-α overexpressed in ovarian cancer [92].
This technology selectively targets tumors, leading to innovative developments in surgical
oncologic imaging. In general, images taken before surgery may differ from reality at
the time of surgery. By visualizing the tumor in real-time, the extent of the surgery can
be determined and adjusted according to the patient’s current situation by identifying
the pattern of the tumor spread and whether there is an invasion of the surrounding
normal tissues. Rosenthal et al. are the leading research group conducting clinical trials
of targeted fluorescent agents in the head and neck area. Phase I dose-escalation studies
were conducted by conjugating cetuximab with the fluorescent dye IRDye800CW [93–96].
A high tumor-to-background ratio and increased sensitivity (92.7%) were confirmed by
lymph node imaging, confirming that it provides surgical guidance by accurately allowing
visualization of primary tumors and metastatic lymph nodes. Additionally, by developing
a fluorescent tumor mapping method through a Phase I study of IRDye800CW-labelled
panitumumab, it was confirmed that important information on tumor margin assessment
can be provided to surgeons during surgery [96–99]. Since fluorescence guide surgery
is not yet a standardized surgical technique, discussion of standard procedures through
large-scale multicenter studies is needed. Long-term follow-up studies through Phase II–III
studies are required.

Given the anatomical location, it is less difficult to access the oral cavity than other
parts of the body. Additionally, the potential metastatic lymph node distribution pattern
of oral cancer is somewhat predictable in comparison to different types of cancers, and,
relatively, the lymph nodes are located at a layer not very deep in the skin. It is more advan-
tageous to standardize safety and efficacy evaluation if the contrast agent is administered
intravenously. However, in the case of oral cancer, studies regarding topical administration
techniques that can reduce systemic toxicity are necessary. Therefore, it is plausible to
perform fluorescence-guided surgery if a well-established fluorescence imaging-based SLN
mapping technique is adequately utilized. However, translational research for molecular
imaging technology using contrast agents is required in the clinical phase. In particular,
the development of novel fluorophores and imaging technology will allow for minimally
invasive procedures and precision surgery that would reduce morbidities and increase
patient survival.
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