
REVIEW

The implementation of artificial intelligence, a field in 
which models are created to interpret and learn from 

external data and then that learning is used to achieve 
assigned tasks, continues to transform the health care in-
dustry. Artificial intelligence is being developed or trialed 
for the management of medical data, accurate disease di-
agnostics, patient monitoring, and personalized treatment 
planning (1). Deep learning has become one of the most 
notable subfields of artificial intelligence owing to its abil-
ity to automatically represent large quantities of data us-
ing deep neural network layers, bypassing the handcrafted 
engineering steps required in machine learning pipeline 
designs (2,3).

Deep learning applications in musculoskeletal imag-
ing are growing steadily owing to expanding computa-
tional power, relatively inexpensive storage devices, and 
availability of data. In musculoskeletal practice, break-
throughs in deep learning performance have occurred in 
three major areas: tissue segmentation (4), image recon-
struction (5), and abnormality detection and classifica-
tion (6,7). The emergence of deep learning applications 
in musculoskeletal imaging has been relatively slow, how-
ever, for several reasons: (a) musculoskeletal tissues—in-
cluding small structural units or curved structures—are 
often assessed by three-dimensional (3D) volumetric im-
aging; (b) tiny structures with low tissue contrast require 
contrast enhancement, such as MRI or CT arthrography; 
(c) the range of abnormalities involved include a num-
ber of normal variations, aging-related findings, rare dis-
eases, and subtle fractures; (d) the computational power 
required for an acceptable spatial resolution is high; (e) 
specific types of contrast agents are needed for the evalu-
ation of various structures (eg, joints, spine); and (f ) 

constructing datasets containing annotations based on 
high degree of expert consensus is relatively difficult ow-
ing to limited standardized reporting (8). Taken together, 
many factors must be considered when generating robust 
datasets for deep learning model development.

To overcome limitations in attaining these datasets, 
generative models that create synthetic, high-quality medi-
cal images have gained substantial attention owing to their 
ability to generate realistic data. This article focuses on 
generative adversarial networks (GANs) and their poten-
tial to overcome the clinical obstacles faced by artificial 
intelligence in the field of musculoskeletal imaging. An 
introduction to GANs and their applications in musculo-
skeletal imaging is presented herein, and the factors to be 
considered in their implementation to improve precision 
in medical procedures are outlined.

Overview of GANs
GANs have received considerable attention owing to their 
realistic data-generation capacities (9) (Fig 1). The main 
advantage of GANs is their ability to generate sharp, re-
alistic images that appear to have been acquired normally 
and that provide insights into the natural features of the 
anatomic target of interest. This property has enabled 
GANs to perform successfully in image generation (10), 
image-to-image translation (11,12), image super-resolu-
tion (13), and 3D-object generation (14) tasks in the field 
of computer vision.

GANs have provided ways to actively generate images 
that resemble those of the target anatomy through the joint 
optimization of two networks (Fig 2). GANs function by 
training two competing types of network—a generator and 
a discriminator. The generator creates a high-dimensional 
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In recent years, deep learning techniques have been applied in musculoskeletal radiology to increase the diagnostic potential of ac-
quired images. Generative adversarial networks (GANs), which are deep neural networks that can generate or transform images, have 
the potential to aid in faster imaging by generating images with a high level of realism across multiple contrast and modalities from 
existing imaging protocols. This review introduces the key architectures of GANs as well as their technical background and challenges. 
Key research trends are highlighted, including: (a) reconstruction of high-resolution MRI; (b) image synthesis with different modalities 
and contrasts; (c) image enhancement that efficiently preserves high-frequency information suitable for human interpretation; (d) pixel-
level segmentation with annotation sharing between domains; and (e) applications to different musculoskeletal anatomies. In addition, 
an overview is provided of the key issues wherein clinical applicability is challenging to capture with conventional performance metrics 
and expert evaluation. When clinically validated, GANs have the potential to improve musculoskeletal imaging.
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tor have been adapted to make DCGANs considerably more 
stable and easier to train, hence, actively researched and used 
for modern GAN architectures.

Pix2Pix: A Conditional GAN
One successful GAN application has been in image-to-image 
translation (eg, filtering, image enhancement, colorization, 
denoising). Pix2Pix, a successful variant of the conditional 
GAN—a GAN that learns to generate images with prespecified 
conditions or characteristics—was proposed to achieve high-
resolution image translation (12). The U-Net architecture (16) 
is used for the Pix2Pix generator, where the model attempts 
to generate corresponding target domain images from input 
images (Fig 3, B). Compared with the original GAN model, 
Pix2Pix requires rigidly aligned pairs of the desired outputs and 
the input counterparts (ie, MR and CT images of the same 
patient). However, paired images with almost-perfect spatial 
alignment are challenging to obtain in medical imaging and 
require additional image registration and processing.

CycleGAN
CycleGAN is one of the first models to gain extensive attention 
through image-to-image translation using unpaired images 
(11). Whereas Pix2Pix requires completely aligned image pairs 
to transform image from domain X to domain Y with a genera-
tor, GX→Y, CycleGAN introduces an additional generator, FY→X, 
to transform images from domain Y back to domain X (Fig 
3, C). The idea behind CycleGAN is that when the input x is 
transferred through the entire transition cycle, X→Y→X, the 
output should be consistent with the input.

To achieve this, two cycles must be satisfied: the forward 
cycle, x → G (x) → F (G (x)) ≈ x, and the backward cycle, y 
→ F (y) → G (F (y)) ≈ y. This performance is encouraged by 
minimizing the cycle consistency loss (Lcyc) that measures the 
discrepancy between the input image and the translated output 
of the cycle. Using T2-weighted and T1-weighted MRI transla-
tion as an example, the generator G is used on an input T2-
weighted image to create a T1-weighted image from the input. 
The synthesized T1-weighted image is then converted back to a 
T2-weighted image using generator F. The discrepancy between 
the original and the translated T2-weighted image is minimized 
using a cycle consistency loss. The cycle consistency loss encour-
ages generators to narrow the space of possible translations and 
thus synthesize images that are structurally consistent with the 
inputs. The transformed G (x) is fed into the discriminator DY to 
discriminate with real images y, whereas discriminator DX aims 
to discriminate translated images F (y) and real images x. In real 
clinical applications, most images are unpaired; thus, CycleGAN 
can be widely introduced into radiologic data science.

GANs in Musculoskeletal Imaging: State-of-the-
Art Methods

MR Image Reconstruction
MRI offers excellent depiction of soft-tissue contrast and is a 
commonly applied, noninvasive, nonionizing radiation imag-

synthetic image from a low-dimensional input, such as arbitrary 
noise. Then, the generated image is fed into the discriminator, 
which attempts to distinguish the generated and real images. The 
generator’s loss function results in the model producing images 
that are increasingly indistinguishable from the original such that 
the discriminator cannot differentiate the generated and original 
images. During this process, the discriminator’s loss function pe-
nalizes misclassifications. While training, the two networks im-
prove simultaneously, with the result that the generator network 
produces realistic and diverse outputs.

Musculoskeletal radiologists can leverage GANs by gaining 
an understanding of the practical applications and benchmark 
architectures to curate data accurately and make better clinical 
judgments of GAN outputs. To this end, we briefly introduce 
the representative variants of GANs that play a cardinal role in 
medical research. Table 1 contains popular deep learning frame-
works for GAN implementation and a list of openly available 
GAN architectures with the corresponding code repositories. 
Table 2 provides additional descriptions of popular GAN meth-
ods and deep learning architectures to illustrate how the building 
blocks can be integrated for specific medical applications.

Deep Convolutional GAN
The most notable GAN design is the deep convolutional GAN 
(DCGAN) (Fig 3, A) (15). Fully connected layers, which are 
commonly used in GAN architectures, are not used in DC-
GANs. In addition, in DCGANs, the generator and the dis-
criminator learn their own spatial downsampling and upsam-
pling to follow an all-convolutional network architecture. 
Techniques such as batch normalization, rectified linear unit in 
the generator, and leaky rectified linear unit in the discrimina-

Abbreviations
AnoGAN = anomaly detection with GAN, CNN = convolutional 
neural network, DCGAN = deep convolutional GAN, GAN = 
generative adversarial network, SRGAN = super-resolution GAN, 
3D = three dimensional

Summary
Generative adversarial networks have the potential to enhance mus-
culoskeletal radiology.

Essentials
 n Generative adversarial network (GAN)–generated medical images 

are driving musculoskeletal radiology research forward by learning 
image representations of bones, joints, and soft tissues which have 
important diagnostic, prognostic, and therapeutic information.

 n GAN-based techniques have the potential to enhance all stages of 
the musculoskeletal radiology quantitative imaging chain by image 
synthesis, translation, enhancement, and segmentation as well as 
by assisting accurate image interpretation.

 n Despite substantial challenges with GANs, the flexible multiple 
modalities, contrast modeling, and high-quality information syn-
thesis of GANs hold promise to facilitate deep learning for person-
alized and precision medicine.

Keywords
 n Adults and Pediatrics, Computer Aided Diagnosis (CAD), 

Computer Applications-General (Informatics), Skeletal-
Appendicular, Skeletal-Axial, Soft Tissues/Skin
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Figure 1: An overview of the terms of artificial intelligence (AI), machine learning (ML), deep learning (DL), and generative 
adversarial network (GAN), as well as their nested relationships with each other. GSN = generative stochastic network, RNN = 
recurrent neural network.

Figure 2: Architecture of a generative adversarial network. The generator takes random inputs to generate new data, whereas the discriminator classifies the generated 
data and real data. The competitive training process of two deep neural networks results in new realistic data close to the true data distribution.

Table 1: Popular Deep Learning Frameworks and Openly Available Code of Generative Adversarial Networks in Medi-
cal and Musculoskeletal Imaging

Variable Description URL Reference

Popular deep learning frame-
works

 TensorFlow Open-source library for machine learning useful for 
large-scale, data-based programming

https://www.tensorflow.org NA

 Keras A high-level neural networks library; simpler to use, 
written in Python

https://keras.io NA

 PyTorch Open-source deep learning library, with advantages of 
creating dynamic computational graphs

https://pytorch.org NA

Available code of GANs in 
medical and musculoskel-
etal imaging

 DCGAN Extension of GAN architecture for using all convolu-
tional neural networks for generator and discrimina-
tor

https://github.com/carpedm20/DC-
GAN-tensorflow

(15)

 Pix2Pix Paired image-to-image translation with conditional 
GANs

https://github.com/phillipi/pix2pix (12)

 CycleGAN Unpaired image-to-image translation with cycle-consis-
tency loss

https://github.com/junyanz/CycleGAN (11)

 SRGAN Single image super-resolution GANs using perceptual 
similarity loss

https://github.com/tensorlayer/srgan (13)

 GANCS Novel compressed-sensing MRI reconstruction frame-
work with GANs

https://github.com/gongenhao/GANCS (32)

 Spine-GAN GAN-based multiple spinal structures segmentation 
and grading network

https://github.com/zhyhan/Spine-GAN (69)

 StarGAN Image-to-image translation between multiple domains 
within a single GAN

https://github.com/yunjey/stargan (89)

Note.—DCGAN = deep convolutional GAN, GANCS = deep GANs for compressed sensing, GAN = generative adversarial network, NA 
= not applicable, SRGAN = super-resolution GAN.
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Table 2: Popular Generative Adversarial Network and Convolutional Neural Network Architectures and Descriptions

Architecture Description Application

FC layer An FC layer is a layer in neural networks where each neuron of the preceding layer 
is connected to every neuron of the following layer. FC layers learn features of all 
possible combinations from the previous layer; however, they are computationally 
expensive owing to a large number of parameters.

(9,27)

Residual network Introduced “skip connections,” which enables building deeper networks. The skip 
connections provide a bypassing path between the layers allowing the reuse of the 
feature maps from the preceding layers. The combined low-level and high-level 
features allow rich information, increasing the network’s flexibility to learn data 
representations.

(25,32)

LSTM Different from the usual feedforward neural network, LSTM uses feedback connec-
tions that can process sequences of data. LSTM networks allow memory on the 
sequence of data, which is particularly well-suited for making time series analysis.

(69)

WGAN WGAN introduces an alternative loss function, Wasserstein distance, which measures 
the closeness between two probability distributions that are different. The advan-
tage of WGAN is that the training is stable and less sensitive to hyperparameters 
and model selection.

(40)

StarGAN Introduced an image-to-image translation network that uses a single network to 
achieve transition between multiple domains. Rather than taking only an image for 
a fixed translation (eg, MR to CT), the generator takes both the image and target 
domain label to transform the input image to the indicated target domain.

(89)

AnoGAN AnoGANs test whether an image is normal or abnormal. AnoGANs are trained 
on only normal data to learn the normal anatomic variability and distribution. 
Given that the AnoGANs are trained on normal images, AnoGANs output a large 
anomaly score for abnormal images distinct from the image seen during training. 
In addition, the discrepancy between the input and the reconstructed images can 
serve as potential imaging biomarkers.

(91,92)

Note.—AnoGAN = anomaly detection with GAN, FC = fully connected, GAN = generative adversarial network, LSTM = long short-term 
memory, WGAN = Wasserstein GAN.

Figure 3: Different generative adversarial network (GAN) framework. A, Architecture of deep convolutional GAN (DCGAN), where the generator and the discrimina-
tor consist of all-convolutional network architecture. B, Architecture of Pix2Pix framework, where paired training data are required in domain X and domain Y (supervised 
learning). C, Architecture of CycleGAN, where the model is trained in an unpaired fashion (unsupervised learning). Lcyc = cycle consistency loss, X = domain X, Y = domain 
Y.
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tate MR image acquisition. MR image reconstruction can be 
approached in a variety of ways, including compressed sensing, 
deep learning–based reconstruction, and GAN-based recon-
struction (Fig 4).

Earlier studies of compressed-sensing MRI reconstruc-
tion focused on using predefined sparsifying transforms, such 
as wavelet and total variation approaches, to produce a sparse 

ing modality for musculoskeletal tissues. It facilitates the as-
sessment of a wide range of anatomic and pathologic features, 
including ligamentous injuries, tears in menisci and tendons, 
and occult bone injuries. Relatively long scan times can limit 
time-critical diagnosis and cause patient discomfort, however. 
Various acceleration techniques, including parallel MRI (17) 
and compressed-sensing MRI (18), have been applied to facili-

Figure 4: A schematic view of different architectures for MRI reconstruction. A, Compressed-sensing scheme. Starting from undersampled k-space data, the data are 
transformed to image and wavelet domains, and iterative optimization is applied to obtain full reconstruction. B, Deep learning–based reconstruction. Automated transform 
by manifold approximation (AUTOMAP) (27) uses fully connected (FC) layers with convolution layers to directly map k-space sensor data to image domain. Deep con-
volutional neural network models reconstruct MR images from zero-filled reconstructions. C, Generative adversarial network (GAN)–based reconstruction incorporates a 
discriminator to generate results closer to full reconstructions. IFFT = inverse fast-Fourier transform.

http://radiology-ai.rsna.org
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representation in a given transform domain (19,20) (Fig 4, A). 
The sparse data enable the generation and removal of incoherent 
artifacts, and a nonlinear reconstruction method is applied to 
enforce image sparsity in the transform domain and data con-
sistency with the acquired k-space data. Owing to the expense 
of nonlinear reconstruction and the unsatisfactory image recon-
struction, however, dictionary learning frameworks using linear 
combinations of data-driven feature representations have been 
introduced (21). Dictionary frameworks still suffer from patch 
aggregation artifacts and large memory requirements to store 
shifted versions of the same features. Alternatively, convolutional 
sparse coding approaches that approximate the signal of inter-
est by replacing regular dictionary dot products with convolu-
tions have achieved fast and memory-efficient performance in 
compressed-sensing MRI tasks (22).

Deep learning approaches for reconstructing MR images (Fig 
4, B) avoid complicated nonlinear optimization and parameter 
tuning. Initially, deep convolutional neural networks (CNNs) 
were used to learn the mappings between zero-filled and fully 
sampled MR images (23); this early research was followed by 
novel extensions using deep cascade of concatenated CNNs for 
MRI reconstruction (24) and residual networks to learn aliasing 
artifacts (25). Recent state-of-the-art deep learning algorithms 
have recast MRI reconstruction as a data-driven or model-driven 
task (26). In the data-driven approach, automated transform by 
manifold approximation (27) directly approximates the Fourier 
mapping between sensor-to-image domain using fully con-
nected layers together with convolution layers. Model-driven 
methods, such as deep variational network (28) and alternating 
direction method of multiplier nets (29), incorporate deep learn-
ing into compressed-sensing reconstruction algorithms to learn 
the regularization parameters and functions, relaxing the hard 
constraint of the reconstruction algorithm and improving the 
reconstructed image quality.

GANs may become a feasible solution for high-quality sen-
sor-to-image reconstruction, where GAN-based MRI recon-
struction (Fig 4, C) mostly adopts additional loss functions to 
the deep de-aliasing GAN (30) architecture. Deep de-aliasing 
GANs add mean square error loss in both image and frequency 
domains and a perceptual loss to the original adversarial loss. The 
perceptual loss (defined as the distance of features extracted by 
pretrained VGG network [31] layers to learn the high-frequency 
pixel distributions of images) is added to achieve visually con-
vincing anatomic details. Deep GANs for compressed sensing 
(32) incorporate residual networks and mixed L1 and L2 loss 
to remove high-frequency noise and artifacts while retaining de-
tails in knee images. In addition, MRI reconstruction based on 
a multifold chain of generators takes extra steps to refine the 
reconstructions, compared with a single-fold generator (33).

An additional potential advantage of GANs is their ability 
to restore severely ill-posed images of highly sparse “raw” sensor 
data. Deep CNNs are specially trained with a different percep-
tual loss to fit finer details that can cause artifacts to be inten-
sified under noise (34). Since the additional adversarial loss in 
GANs trains the discriminator to distinguish better, fully sam-
pled reconstructions and generated images successively, the gen-
erator may learn the refinements necessary to create artifact-free 

images. One day the advantages of GANs may outweigh those of 
deep CNNs in the reconstruction of highly sparse k-space data 
obtained from shorter scan times.

Image Enhancement

Denoising of CT images.— Low-dose CT is preferred over 
normal-dose CT because ionizing radiation doses have been 
associated with a small but increased risk of cancer (35); this 
increased risk increases the demand for low-dose CT. Images 
obtained with low-dose CT typically have highly nonlinear 
and nonuniformly distributed noise, however. CNN-based 
denoising methods have been investigated on models trained 
on paired datasets of normal-dose CT images and low-dose 
CT images (36,37). In these instances, low-dose CT images 
are generated by injecting artificial noise (eg, Poisson noise, 
Gaussian noise [38,39]) into the original normal-dose CT im-
ages acquired routinely. Since the networks typically use the 
pixel-wise loss for denoising, the drawback of this technique is 
that high-frequency image textures and structures are inevita-
bly lost together with the noise. Thus, there is a need for other 
models for CT denoising.

Conditional GANs have been used with a paired dataset 
to generate images resembling normal-dose CT from low-dose 
CT inputs. Conditional GAN frameworks—with Wasserstein 
distance and perceptual loss (40), structural sensitivity loss 
in 3D space (41), and sharpness detection networks that en-
hance low-contrast regions (42)—have been investigated for 
mitigating CT noise. Stacked GAN (43) decomposes the CT 
enhancement into two subtasks. First, denoising GAN is ap-
plied to the noisy CT image; the second GAN enhances the 
resolution of the CT images for further lesion segmentation, 
which could include bone regions.

Conditional GAN-based methods are restricted in real clini-
cal situations, however, as matched low-dose and normal-dose 
CT pairs typically are unavailable because of the unnecessary, ex-
tra radiation exposure to patients that would be required to ob-
tain both sets of CT images. Artificial noise injection into images 
is oversimplified and cannot be generalized well for complicated, 
CT-specific noise distributions. In addition, development of in-
dependent algorithms for simulation of low-dose CT images is 
challenging owing to the need for statistical and domain knowl-
edge such as x-ray photon statistics, electronic noise background, 
noise injection in sinogram domain, and multiple technical and/
or scanner model-related parameters (39).

To resolve this unmatched pair challenge, an unsupervised 
denoising network can be learned using the CycleGAN frame-
work. The forward and backward cycles of the two generators and 
discriminators learn the opposite direction mappings—one from 
low-dose to normal-dose images, the other from normal-dose to 
low-dose images. CycleGAN methods have been used to attenuate 
noise in the micro-CT tibia dataset (44) and with multiphase car-
diac CT angiography (45) in the semisupervised and unsupervised 
settings. In general, both semisupervised and unsupervised Cycle-
GAN approaches result in competitive denoising performance 
compared with the fully supervised deep learning methods with 
detailed texture and edge information preservation.

http://radiology-ai.rsna.org
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Super-resolution.— Super-resolution, a process of upscaling 
images to high spatial resolution from low spatial resolution, 
has suffered from limitations of the imaging equipment, the 
susceptibility of the medical images to patient movement 
(eg, voluntary or involuntary patient movement or pulsa-
tion of blood vessels), exposure to ionizing radiation, and 
long acquisition-time limitations. Super-resolution CNN-
based methods (46,47) have outperformed classic super-
resolution algorithms with respect to peak signal-to-noise 
ratio and structural similarity index. These methods have 
failed to produce consistent images that appear natural to 
the human eye, however.

Super-resolution GAN (SRGAN) (13) approaches have 
recently attracted considerable attention, demonstrating 
remarkable performance compared with previous super-
resolution algorithms. SRGAN incorporates perceptual loss 
to encourage the generator to learn the structural high-fre-
quency details and pixel distributions of the high-resolution 
images (Fig 5). Compared with other types of SR methods, 
SRGAN achieves excellent performance in revealing visual 
information and recovering useful spatial and textural infor-
mation. A 3D-SRGAN algorithm that generates thin-sec-
tion interval CT images (virtual thin sections) from corre-
sponding thick-interval images recovered better perceptual 
quality in high-intensity values such as bone boundaries 
(48). To reveal the microarchitecture and preserve anatomic 
information in CT bone imaging, a residual-based Cycle-
GAN framework was used to generate high-resolution CT 
images by semisupervised and unsupervised learning (44). 
Notably, the proposed semisupervised CycleGAN-based 
enhancement was capable of capturing the fine structural 
textures with pixel sizes in the tibia bone dataset, showing 
competitive quantitative results with fully supervised super-
resolution networks (Fig 6).

Image Synthesis

Data augmentation.— GANs can compensate for data scarcity 
or class imbalances by generating plausible samples to train a 
deep learning model. Compared with conventional data aug-
mentation (eg, shifts, crops, horizontal or vertical flips, rota-
tions), GAN-based data augmentation provides new images 
that resemble the original data to add to the training dataset 
(Fig 7). For example, one study used CycleGAN on normal 
thigh MR images to augment fatty infiltration, which facilitat-
ed the development of a segmentation network for thigh MRI 
with severe fatty infiltration as synthetic images were added 
to the training dataset (49). Additionally, the use of B-mode 
musculoskeletal US and synthetic segmentation masks trained 
with CycleGAN has been proposed to automate the genera-
tion and labeling of B-mode images (50). Very few GAN-based 
data augmentation procedures have been conducted in muscu-
loskeletal imaging. Those conducted in other fields (eg, liver 
lesion synthesis from a limited CT dataset [51], body CT syn-
thesis from digital body phantoms [52]), however, have dem-
onstrated the possibility to capture the high degree of variabil-
ity that might be applied to musculoskeletal disorders.

Cross-modality synthesis.— Cross-modality image synthesis is 
the process by which synthetic images are generated for one 
modality based on another (eg, generating synthetic CT im-
ages from MRI data). Despite requiring a large set of matched 
image pairs from two modalities, cross-modality image syn-
thesis is an area of active research. Recently, image-to-image 
transfers using GANs have shown the potential to provide 
multiparametric functional and anatomic information without 
additional examination or diagnostic planning, thereby occu-
pying an increasingly important role in personalized medicine. 
The conditional GAN frameworks are used for cases in which 

Figure 5: The overall structure of super-resolution generative adversarial network. Perceptual loss is defined by the following: the generated image and the real high-
resolution (HR) image are passed through a VGG-16 (or -19) network (31). The distance between specific rectified linear unit (relu) layers is compared to preserve high-
frequency details between the images, and the adversarial loss further pushes the generated image to follow the natural image manifold. LR = low-resolution, MSE = mean 
squared error. Images used were obtained from the NYU Langone Health fastMRI Dataset (fastmri.med.nyu.edu) (5,95).

http://radiology-ai.rsna.org
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different image modalities can be perfectly registered with each 
other to ensure high fidelity. Moreover, CycleGAN networks 
can be used to manage cases in which perfect alignment be-
tween modalities is unfeasible.

The main role of GAN-based synthetic CT generation tasks 
is to overcome the shortcomings of MRI only–based treatment 
regarding missing electron density, PET/MRI attenuation cor-
rection, and difficulties of distinguishing between bones and 
air. Deep CNNs and conditional GANs have achieved moder-
ate success with aligned MRI/CT images (53,54). Although 
the conditional GAN frameworks alleviate the problem of 
blurred structures of deep CNNs to some extent by includ-
ing an adversarial loss, they remain limited by the pixel-wise 
loss component that requires an aligned MRI/CT dataset. 
CycleGAN, which does not require paired data, demonstrated 
effectiveness in qualitative analysis with fewer artifacts and 
blurring compared with paired data (55). However, finding 
the optimal translation on higher semantic levels and large 

variations (geometric, shape translations [56,57]) can be far 
more challenging. Customized loss functions, such as gradient 
consistency (58), mean p distance, and gradient difference loss 
(59), have been proposed as additional constraints to preserve 
boundaries of regions in the anatomic structures in synthetic 
CT volumes. Furthermore, in radiotherapeutic imaging, MRI-
based dose calculation has been found to be feasible for the 
entire pelvis in patients with prostate cancer using the synthetic 
CT images generated by conditional GANs (60).

For multicontrast synthesis, CNN segmentation combined 
with GAN image translation has been explored to develop a 
generalized segmentation tool for multiple MRI contrasts 
from a single set of annotated data for training. Liu (61) used a 
CycleGAN to translate T1-weighted spoiled gradient-recalled 
echo knee image contrasts in the Segmentation of Knee Im-
ages 2010 image dataset (http://www.ski10.org) to proton 
density-weighted image and T2-weighted image knee MR 
image contrasts. The CycleGAN network incorporates a joint 

Figure 6: Comparison of CT super-resolution and denoising case from micro-CT tibial bone images. The zoomed regions of interest of tibial bony structures are shown 
in boxes outlined in red or yellow. Generative adversarial network constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE) recovers subtle struc-
tures and fine details better than other variations of the proposed networks, particularly in the regions marked by green, yellow, and red circles. The results of semisupervised 
GAN-CIRCLE (GAN-CIRCLEs) predict sharper images and richer anatomic textures compared with unsupervised GAN-CIRCLE (GAN-CIRCLEu). (Reprinted, with permis-
sion, from reference 44.) A+ = adjusted anchored neighborhood regression, ESPCN = efficient subpixel convolutional neural network, FSRCNN = fast super-resolution con-
volutional neural network, G-Adv = G-Adversarial, G-Fwd = G-Forward, HR = high-resolution, LapSRN = Laplacian pyramid super-resolution network, LR = low-resolution, 
SRGAN = super-resolution generative adversarial network.
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segmentation network to output translated proton density-
weighted images and T2-weighted MR images, as well as seg-
mentation masks. The proposed network achieved comparable 

segmentation performance on femoral and tibial cartilage, 
as well as on the femur and tibia compared with the super-
vised U-Net segmentation performance (61). The proposed 

Figure 7: Overview of generative adversarial network (GAN) applications in musculoskeletal imaging. Figures are directly cropped from cor-
responding studies: A, GAN schemes for low-dose CT denoising with and without paired images. B, GAN schemes for super-resolution (SR) with 
and without paired images. C, Examples of GAN-based image synthesis: (i) Synthetic spine MR image from radiographic images (72); (ii) sagittal 
(sag) to coronal (cor) radiograph translation (71); (iii) joint effusion synthesis from CycleGAN—knee MR images from Clinical Hospital Centre Rijeka, 
Croatia (85); (iv) multicontrast domain translation in knee MR images—synthetic T1-weighted MR image from T2 fat map and T2 water map using 
conditional GAN; and (v) synthetic planar radiographs created from labels (71). D, Unpaired multicontrast MR image synthesis with StarGAN, 
multiple domain mapping using a single generator (89). Lcyc = cycle consistency loss, D = discriminator, G = generator, HR = high-resolution, LDCT 
= low-dose CT, LR = low-resolution, MSE = mean squared error, MS-SSIM = multiscale structural similarity,  NDCT = normal-dose CT, SRGAN = 
super-resolution GAN. 
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generalized segmentation technique substantially reduces the 
annotation burden placed on musculoskeletal radiologists, and 
multiple structural information from various contrast images 
could be obtained from a single set of annotated data. Further-
more, recent work on the reconstruction of 3D CT in biplanar 
two-dimensional radiographs (62) shows the possibility of 3D 
cartilage visualization through two-dimensional MRI inputs, a 
promising strategy using 3D-GAN modeling.

GANs in Musculoskeletal Imaging: Specific 
Anatomies
Discriminative models, such as classification and regression 
models, have offered an impressive array of studies to identify 
pathologic abnormalities and facilitate automated quantitative 
analysis (63). CNN models for detecting fractures (64) and lig-
ament injuries (65), automated severity grading of osteoarthri-
tis (66), and assessment of bone age (67) have been developed 
to support high-performance diagnosis. Unlike discriminative 
models, the most notable studies of GANs for specific muscu-
loskeletal anatomy mainly focused on image generation tasks 
in data augmentation, cross-modality synthesis, and segmenta-
tion networks.

Spine
Level-by-level description and identification of the degen-
erative disease of the vertebral bodies through daily muscu-
loskeletal imaging is time-consuming. Therefore, automated 
localization and labeling of the spinal structures constitute 
the first step toward facilitating radiologic workflow efficiency. 
Complementary to deep learning approaches in medical image 
analysis of the spine (68), GAN-based approaches have been 
used to extract location information of vertebrae, disks, and 
spinal shape. Spine-GAN achieves segmentation of the neu-
ral foramen, intervertebral disks, and vertebrae concurrently 
by capturing the variability of spinal structures and spatial 
correlations using extensions such as atrous convolutions (ie, 
convolutions with holes) and long short-term memory module 
(69). The discriminator progressively strengthens the spatial 
consistency of the segmentation result by discriminating the 
segmentation output with the ground truth masks. In addi-
tion, a butterfly-shaped generator localizes the vertebrae in CT 
images, with the discriminator operating on the goodness of 
these predictions to encode a local vertebral spread (70).

In addition to vertebra labeling, GANs have exhibited the 
potential to become a feasible method for the generation of syn-
thetic radiographs from labeled data describing the shape of the 
lumbar vertebrae (71). However, the networks show anatomic 
inaccuracies in generating the structures not depicted in the la-
beled data, such as the spinous processes and the distal aspect 
of the sacrum. The potential for super-resolution and image-
to-image translation in conditional GANs delivers encouraging 
results in MRI contrast conversions such as T1-weighted to T2-
weighted images and T2-weighted to short tau inversion-recov-
ery images or turbo inversion recovery magnitude images (72); 
meanwhile, image translation from radiographs to MR images 
exhibits doubtful accuracy in regions not visible in radiographs, 

such as the thoracolumbar junction. Translations that lack a clear 
association between modality translations—a shortcoming for 
which current clinicians may distrust the synthesized output—
require additional medical physics-based investigations.

Bone and Muscle
In musculoskeletal imaging, image synthesis is challenging be-
cause global fidelity, feature diversity, and high-frequency tex-
tures need to be preserved for precise delineation of muscles 
and bone structures. Since the pixel-wise loss and cycle con-
sistency loss is not sufficient to maintain structure consistency 
for fine bone structures, different feature-preserving losses have 
been validated for skeletal assessment. For example, additional 
structural constraints, such as gradient consistency loss or cor-
relation coefficient loss, forces the generator to create consis-
tent boundaries (58,73). The advantages of GANs can also be 
maximized for bone lesions (74), fractures, and soft-tissue le-
sions to increase the incidences of rare diseases on radiographs 
or to overcome limited clinical education with an alternative to 
real images in the musculoskeletal domain for medical students 
and radiology trainees (75).

GANs for muscle imaging focus on the generation of syn-
thetic images to overcome limited database and rare entities. Re-
alistic and statistically cogent B-mode musculoskeletal US im-
ages can be translated from segmentation masks that encode the 
main features (two aponeuroses, fascicles, and pennation angle 
between 10° and 30°) to obtain large volumes of annotated data 
automatically (50). In addition, texture augmentation for fatty 
infiltration simulation has been achieved through CycleGAN 
(49). The recent GAN-based techniques may further facilitate 
artifact reduction and preservation of high resolution to create a 
large-scale standardized dataset for muscle imaging.

Implementations and Practical Considerations for 
GANs
GANs appear to hold great promise across a wide range of ap-
plications. From a practical perspective, however, integration 
of GANs can be challenging in terms of training. We have re-
viewed different architectures and extensions, and Table 3 lists 
the challenges and recommendations detailed by researchers 
and studies for training GANs (15,76,77). Figure 8 shows an 
example of image translation progress and loss of generator and 
discriminator in the training process.

Image Quality Evaluation
No universally agreed-on performance metrics exist for evaluat-
ing the perceptual quality of GANs. Most CNN models incor-
porate similarity metrics for both loss functions in training and 
image distortion measurement in the test phase (eg, mean abso-
lute error, peak signal-to-noise ratio, information fidelity crite-
rion, structural similarity index). However, high similarity of dis-
tortion measures does not indicate high perceptual quality of the 
synthesized images (78), which increases the need for the devel-
opment of a new measurement that satisfies clinical applicabil-
ity. Human judgment-based evaluation is a popular qualitative 
approach in which such measurements are computed through 
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real versus synthesized questionnaires or diagnostic quality scor-
ing (44,79). One way to alleviate the problems of expensive and 
time-consuming human evaluations is to use downstream tasks 
such as classification, segmentation, or a referenceless blur factor 
(80) as a validation tool for quality assessment of the generated 
images. In addition, many quantitative methods have been de-
signed as an alternative to human assessors; for these, the incep-
tion score (76) and the Fréchet inception distance (81) have been 

widely used owing to reasonably accurate estimates of the quality 
and diversity of generated images afforded by those measures. 
The adequacy of these evaluation metrics remains unexplored in 
the medical domain, however, and needs further study.

Artifact Introduction
One issue that arises when using GANs is that generated im-
ages may contain various subtle artifacts that may be difficult 

Table 3: Challenges and Practical Techniques for Generative Adversarial Network 
Training

Variable Description

Challenge
 Nonconvergence GANs frequently show convergence failure; the model parameters 

oscillate or destabilize.
 Mode collapse The generator learns to produce limited variety of plausible out-

puts, or even produce the same outputs that can best fool the 
discriminator.

 Diminished gradient The discriminator gets too far ahead in training such that the 
generator training fails to produce plausible outputs (ie, learns 
nothing) owing to vanishing gradients.

Tips for training GANs
 Architecture design Avoid fully connected layers to make deeper layers.

Replace pooling layers with strided convolutions (discriminator) 
and with fractional-strided convolutions (generator).

For the generator, use ReLU activation and tanh for the final layer.
For the discriminator, leaky ReLU is worth considering.

 Track failures early Check whether the discriminator loss goes to zero or if generator 
loss goes to zero.

 Mini-batch discrimination To avoid the generator creating similar images (mode collapse), 
develop features across multiple samples.

 Freeze learning To balance between generator and discriminator, an effective 
remedy is to freeze learning in one model when it becomes too 
successful.

 Soft and noisy labels To make the model less overconfident, penalize the target values 
for the discriminator away from 1.0 or make labels noisy.

Note.—Tips for training generative adversarial networks (GANs) are summarized (15, 76,77). 
ReLU = rectified linear unit.

Figure 8: Walk-through of generative adversarial network (GAN) training. A, Stability tips to improve GAN performance (Table 3). B, Example of image generation 
progress of GANs for joint effusion synthesis. The generated images at corresponding training stages are superimposed on the training loss graph. The generator and dis-
criminator loss oscillates. Images from Clinical Hospital Centre Rijeka, Croatia (85). D loss = discriminator loss, G loss = generator loss, ReLU = rectified linear unit.
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to detect. In the process of GAN-based image synthesis, the 
generator can start creating high-frequency patterns owing 
to its objective of producing finer details to create perceptu-
ally convincing translations that represent the natural image 
manifold (13,32). Additionally, checkerboard artifacts may be 
introduced when the generator produces images with decon-
volution (82). Quantifying the hallucination risk of GANs is 
challenging and requires future research. As such, GAN-in-
duced high-frequency textures, especially on images that were 
not seen during the training phase, must be assessed by an ex-
pert radiologist to prevent clinical judgment on erroneous out-
put. In the case of MRI reconstruction, the breaking point of 
k-space undersampling rates at which GANs can start to create 
high-frequency noise and hallucinations requires study (32).

Anatomic Distortion
For GANs that incorporate VGG-based perceptual loss, distor-
tion of anatomic features has been detected in prior studies, 
possibly owing to the fact that VGG networks are pretrained 
on natural images, which have different structural features 
than medical images (41). Similarly, as a result of the ill-posed 
problem in unsupervised learning of CycleGAN, finding the 
optimal translation for geometric and structural levels is far 
more challenging compared with transferring local textures 
(56,57,83). For musculoskeletal image translation with large 
anatomic variations, we anticipate that other new research ar-
eas will expand to assess the preservation of anatomic struc-
tures, particularly those related to loss functions.

In addition, since CycleGAN is trained to implicitly ap-
proximate the underlying structure of the distinct anatomic 
structures, the performance relies heavily on the distribution of 
the target structure. Thus, in an extremely biased target domain 
composition (eg, all tumor or all healthy), the CycleGAN adds 
or removes tumor features in the target images from a balanced 
source domain distribution (84). To demonstrate the effect of 
target domain distribution on CycleGAN translations, we previ-
ously conducted a study with a publicly available dataset (Clinical 

Hospital Centre Rijeka, Croatia [85]) to synthesize joint effusion 
on sagittal proton density-weighted knee examinations without 
pathologic findings. The comparison in Figure 9 illustrates the 
bias impact of the changing ratio of joint effusion images (from 
0% to 100%) in the target domain. Joint effusion increases from 
left to right, and when trained on 100% effusion the translated 
images display a large amount of joint effusion. This emphasizes 
the need to address the possible effects of distribution mismatch-
ing on GAN performances through careful curation of data by 
health care professionals.

GAN Application in Musculoskeletal Imaging: 
Quantitative Precision Image Analysis
Deep learning–based quantitative methods have proven highly 
efficient in assisting with musculoskeletal clinical assessments, 
assessing objective imaging features (eg, osteoarthritis, joint 
degeneration [66,86]). Using both high-resolution visual fea-
tures and accurate musculoskeletal structure segmentation, 
GAN-based applications can become an essential quantitative 
imaging method for the precision treatment of various muscu-
loskeletal conditions.

In recent years, several GAN-based techniques have been 
developed to perform image generation between multiple mo-
dalities. Synthetic MRI techniques—for instance, the recon-
struction of various MR image contrasts from a single scan—
had been studied actively before GANs were proposed (87,88). 
The motivations for multidomain translation based on the 
StarGAN architecture (89), however, arose from its capacity 
and efficiency to learn all domains with one single generator. 
Implementing StarGAN for multiple domain translation may 
lead to the generation of images of different imaging proto-
cols, institutions, vendors, and patient populations; it may 
even benefit clinicians who want to monitor individual treat-
ment responses in order to supplement precision treatments or 
personalized plans. Multidomain image translation combined 
with GAN-based image enhancement (eg, super-resolution, 
denoising) is a highly valuable image processing technique and 

Figure 9: A, Joint effusion synthesis from healthy class through CycleGAN domain translation while the ratio of joint effusion samples in the target domain is increased. 
The distribution of joint effusion samples is increased from 0% to 100%, in increments of 20%. The images of the source domain (knee MRI without effusion) are shown in the 
left-most column, with the translated image in the target domain shown in the right-most column. The magnitude of the joint effusion increases from left to right. B, The graph 
(box plots) for the mean pixel area of synthesized joint effusion images with different ratios of joint effusion samples in the target domain. The horizontal line in each box rep-
resents the median (50th percentile) of the calculated strain ratios, and the top and bottom of each box represents the 25th and 75th percentiles, respectively. Images from 
Clinical Hospital Centre Rijeka, Croatia (85). GAN = generative adversarial network, PD = proton-density.
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is anticipated to improve the quantitative and personalized as-
sessment of musculoskeletal disorders (Fig 10, A).

In addition to the promise of multimodality image synthe-
sis, we believe there is substantial promise for GANs to provide 
high value in automated quantitative segmentation. Through 
domain adaptations between different tissue contrasts or modali-
ties, GAN-driven segmentation facilitates the fully automated 
segmentation process by generalizing a single set of annotated 
data to different domains (61), thereby resolving the problem 
of annotation scarcity in musculoskeletal imaging. Moreover, 
semantic segmentation using GANs (69,90) corrects the higher-
level inconsistencies between the segmentation model prediction 
and the ground truth masks, which is critical to obtain accurate 
cartilage and bone segmentation (Fig 10, B).

In addition to the implementation of GANs for image acqui-
sition, the increasing use of GANs as models for identifying po-
tential imaging biomarkers has encouraged progress in personal-
ized precision medicine. Trained on only data containing normal 
anatomy, anomaly detection with GANs (AnoGANs) learn the 
anatomic variability of healthy distributions. When tested on 
unseen cases or anomalous images, AnoGANs output a large 
anomaly score for query images distinct from the images seen 
during training, thereby serving as potential imaging biomarker 
candidates (91). AnoGANs can be trained to detect metastatic 
bone tumors (92) and may have the potential to capture cartilage 
injuries, ligamentous or meniscal tears, bone marrow abnormali-
ties, and marrow-replacing lesions. In addition, GANs have ex-
hibited capabilities in modeling disease progression (93), which 
can be applied to the prediction of osteoarthritis progression, 
treatment response, and surgical repair outcome. In this regard, 

a variety of GAN techniques may eventually allow image diag-
nosis of the subtle progressions of skeletal tumors and tumor-
like lesions (94), supplemented by computer-aided systems as an 
adjunct instrument for individualized diagnosis and treatment 
guidance (Fig 10, C).

Conclusion
GANs have the potential to be the next step in artificial in-
telligence–powered radiology owing to their capacity to go 
beyond recognition and classification toward the generation 
of high-resolution, synthetic images. Although GANs have 
a promising future in musculoskeletal research settings, their 
clinical application requires careful curation of the dataset so as 
to include—by high-quality annotations—cases relevant to the 
clinical question. It will be the role of the radiologist to under-
stand the inherent properties of the given data within the GAN 
procedure and to collaborate with clinicians and data scientists 
in relevant applications. Because the use of GAN-based tools 
has the potential to benefit every step in the overall quantitative 
imaging chain and assist accurate image interpretation, it will 
be imperative for future musculoskeletal radiologists to adopt 
these powerful tools appropriately. From flexible manipulation 
of multiple radiologic images to the accurate and precise im-
aging for quantitative assessment, increased incorporation of 
GANs will provide cost-effective, reproducible, and efficient 
approaches for patient monitoring and precision treatment.
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